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Abstract

We present AROMA 1 (Attentive Reduced Order Model with Attention), a frame-
work designed to enhance the modeling of partial differential equations (PDEs)
using local neural fields. Our flexible encoder-decoder architecture can obtain
smooth latent representations of spatial physical fields from a variety of data types,
including irregular-grid inputs and point clouds. This versatility eliminates the
need for patching and allows efficient processing of diverse geometries. The se-
quential nature of our latent representation can be interpreted spatially and permits
the use of a conditional transformer for modeling the temporal dynamics of PDEs.
By employing a diffusion-based formulation, we achieve greater stability and en-
able longer rollouts compared to conventional MSE training. AROMA’s superior
performance in simulating 1D and 2D equations underscores the efficacy of our
approach in capturing complex dynamical behaviors.

1 Introduction

In recent years, many deep learning (DL) surrogate models have been introduced to approximate
solutions to partial differential equations (PDEs) (Lu et al., 2021; Li et al., 2021; Brandstetter et al.,
2022; Stachenfeld et al., 2022). Among these, the family of neural operators has been extensively
adopted and tested across various scientific domains, demonstrating the potential of data-centric DL
models in science (Pathak et al., 2022; Vinuesa & Brunton, 2022).

Neural Operators were initially constrained by discretization and domain geometry limitations. Re-
cent advancements, such as neural fields (Yin et al., 2022; Serrano et al., 2023) and transformer
architectures (Li et al., 2023; Hao et al., 2023), have partially addressed these issues, improving
both dynamic modeling and steady-state settings. However, Neural Fields struggle to model spatial
information and local dynamics effectively, and existing transformer architectures, while being flex-
ible, are computationally expensive due to their operation in the original physical space and require
large training datasets.

Our hypothesis is that considering spatiality is essential in modeling spatio-temporal phenomena, yet
applying attention mechanisms directly is computationally expensive. We propose a new framework
that models the dynamics in a reduced latent space, encoding spatial information compactly, by
one or two orders of magnitude relative to the original space. This approach addresses both the
complexity issues of transformer architectures and the spatiality challenges of Neural Fields.

1The source code for this paper is available at https://github.com/LouisSerrano/aroma
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Our novel framework leverages attention blocks and neural fields, resulting in a model that is easy
to train and achieves state-of-the-art results on most datasets, particularly for complex geometries,
without requiring prior feature engineering. To the best of our knowledge, we are the first to pro-
pose a fully attention-based architecture for processing domain geometries and unrolling dynamics.
Compared to existing transformer architectures for PDEs, our framework first encapsulates the do-
main geometry and observation values in a compact latent representation, efficiently forecasting the
dynamics at a lower computational cost. Transformer-based methods such as (Li et al., 2023; Hao
et al., 2023) unroll the dynamics in the original space, leading to high complexity.

Our contributions are summarized as follows:

• A principled and versatile encode-process-decode framework for solving PDEs that operate
on general input geometries, including point sets, grids, or meshes, and can be queried at
any location within the spatial domain.

• A new spatial encode / process / decode approach: Variable-size inputs are mapped onto
a fixed-size compact latent token space that encodes local spatial information. This latent
representation is further processed by a transformer architecture that models the dynamics
while exploiting spatial relations both at the local token level and globally across tokens.
The decoding exploits a conditional neural field, allowing us to query forecast values at any
point in the spatial domain of the equation.

• We include stochastic components at the encoding and processing levels to enhance stabil-
ity and forecasting accuracy.

• Experiments performed on representative spatio-temporal forecasting problems demon-
strate that AROMA is on par with or outperforms state-of-the-art baselines in terms of
both accuracy and complexity.

2 Problem setting

In this paper, we focus on time-dependent PDEs defined over a spatial domain Ω (with boundary
∂Ω) and temporal domain [0, T ]. In the general form, their solutions u(x, t) satisfy the following
constraints :

∂u

∂t
= F

(
ν, t, x,u,

∂u

∂x
,
∂2u

∂x2
, . . .

)
, ∀x ∈ Ω,∀t ∈ (0, T ] (1)

B(u)(t, x) = 0 ∀x ∈ ∂Ω,∀t ∈ (0, T ] (2)

u(0, x) = u0 ∀x ∈ Ω (3)

where ν represents a set of PDE coefficients, Equations (2) and (3) represent the constraints with
respect to the boundary and initial conditions. We aim to learn, using solutions data obtained with
classical solvers, the evolution operator G that predicts the state of the system at the next time step:
ut+∆t = G(ut). We have access to training trajectories obtained with different initial conditions,
and we want to generate accurate trajectory rollouts for new initial conditions at test time. A rollout
is obtained by the iterative application of the evolution operator um∆t = Gm(u0).

3 Model Description

3.1 Model overview

We provide below an overview of the global framework and each component is described in a sub-
sequent section. The model comprises three key components, as detailed in Figure 1.

• Encoder Ew : utX → Zt. The encoder takes input values utX sampled over the domain Ω at time
t, where X denotes the discrete sample space and could be a grid, an irregular mesh or a point set.
utX is observed at locations x = (x1, . . .xN ), with values ut = (ut(x1), · · · ,ut(xN )). N is the
number of observations and can vary across samples. utX is projected through a cross attention
mechanism onto a set of M tokens Zt = (zt1, · · · , ztM ) with M a fixed parameter. This allows
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Figure 1: AROMA inference: The discretization-free encoder compresses the information of a set
of N input values to a sequence of M latent tokens, where M < N . The conditional diffusion
transformer is used to model the dynamics, acting as a latent refiner. The continuous decoder lever-
ages self-attentions (SA), cross-attention (CA) and a local INR to map back to the physical space.
Learnable tokens are shared and encode spatial relations. Latent token Zt represents ut and Zt+∆t

is the prediction corresponding to ut+∆t.

mapping any discretized input utX onto a fixed dimensional latent representation Zt encoding
implicit local spatial information from the input domain. The encoder is trained as a VAE and Zt

is sampled from a multivariate normal statistics as detailed in Section 3.2.

• Latent time-marching refiner Rθ : Zt → Ẑt+∆t. We model the dynamics in the latent space
through a transformer. The dynamics can be unrolled auto-regressively in the latent space for any
time horizon without requiring to project back in the original domain Ω. Self-attention operates on
the latent tokens, which allows modeling global spatial relations between the local token represen-
tations. The transformer is enriched with a conditional diffusion mechanism operating between
two successive time steps of the transformer. We experimentally observed that this probabilistic
model was more robust than a baseline deterministic transformer for temporal extrapolation.

• Decoder Dψ : Ẑt+∆t → ût+∆t. The decoder uses the latent tokens Ẑt+∆t to approximate the
function value ût+∆t(x) = Dψ(x, Ẑt+∆t) for any query coordinate x ∈ Ω. We therefore denote
ût+∆t = Dψ(Zt+∆t) the predicted function.

Inference We encode the initial condition and unroll the dynamics in the latent space by succes-
sive denoisings: ûm∆t = Dψ ◦ Rmθ ◦ Ew(u0). We then decode along the trajectory to get the
reconstructions. We outline the full inference pipeline in Figure 1 and detail its complexity analysis
in Appendix C.1.

Training We perform a two-stage training: we first train the encoder and decoder, secondly train
the refiner. This is more stable than end-to-end training.

3.2 Encoder-decoder description

The encoder-decoder components are jointly trained using a VAE setting. The encoder is specifically
designed to capture local input observation from any sampled point set in the spatial domain and
encodes this information into a fixed number of tokens. The decoder can be queried at any position
in the spatial domain, irrespective of the input sample.

Encoder The encoder maps an arbitrary number N of observations (x,u(x)) :=
((x1,u(x1)), . . . , (xN ,u(xN )) onto a latent representation Z of fixed size M through the following
series of transformations:
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(i) (x,u(x))
(positional, value) embeddings−−−−−−−−−−−−−−−−−−−−→ (γ(x),v(x)) ∈ RN×d

(ii) (T,γ(x))
geometry encoding−−−−−−−−−−−−−−−−−−−−→ Tgeo ∈ RM×d

(iii) (Tgeo,v(x))
observation spatial encoding−−−−−−−−−−−−−−−−−−−−→ Tobs ∈ RM×d

(iv) Tobs dimension reduction−−−−−−−−−−−−−−−−−−−−→ Z ∈ RM×h

where (γ(x),v(x)) = ((γ(x1), v(x1)), . . . , (γ(xN ), v(xN ))), and h≪ d.

(i) Embed positions and observations: Given an input sequence of coordinate-value
pairs (x1,u(x1)), . . . , (xN ,u(xN )), we construct sequences of positional embeddings γ =
(γ(x1), . . . , γ(xN )) and value embeddings v = (v(x1), . . . , v(xN )), where γ(x) =
FourierFeatures(x;ω) and v(x) = Linear(u(x)), with ω a fixed set of frequencies. These
embeddings are aggregated onto a smaller set of learnable query tokens T = (T1, . . . , TM ) and then
T′ = (T ′

1, . . . , T
′
M ) with M fixed, to compress the information and encode the geometry and spatial

latent representations.

(ii) Encode geometry: Geometry-aware tokens T are obtained with a multihead cross-attention
layer and a feedforward network (FFN), expressed as Tgeo = T+ FFN(CrossAttention(Q =
WQT,K = WKγ,V = WV γ)). This step does not include information on the observations,
ensuring that similar geometries yield similar query tokens Tgeo irrespective of the u values.

(iii) Encode observations: The Tgeo tokens are then used to aggregate the observation values via
a cross-attention mechanism: Tobs = Tgeo + FFN(CrossAttention(Q = W′

QT
geo,K =

W′
Kγ,V = W′

V v)). Here, the values contain information on the observation values, and the
keys contain information on the observation locations.

(iv) Reduce channel dimension and sample Z: The information in the channel dimension of
T′ is compressed using a bottleneck linear layer. To avoid exploding variance in this compressed
latent space, we regularize it with a penalty on the L2 norm of the latent code ∥Z∥2. Introducing
stochasticity through a variational formulation further helps to regularize the auto-encoding and
obtain smoother representations for the forecasting step. For this, we learn the components of a
Gaussian multivariate distribution µ = Linear(Tobs) and log(σ) = Linear(Tobs) from which
the final token embedding Z is sampled.

Decoder The decoder’s role is to reconstruct ût+∆t from Ẑt+∆t, see Figure 1. Since training
is performed in two steps (“encode-decode” first and then “process”), the decoder is trained to
reconstruct ût for input ut. One proceeds as follows. (i) Increase channel dimensions and apply
self-attention: The decoder first lifts the latent tokens Z to a higher channel dimension (this is the
reverse operation of the one performed by the encoder) and then apply several layers of self-attention
to get tokens Z

′
. (ii) Cross-attend: The decoder applies cross-attention to obtain feature vectors

that depend on the query coordinate x, (fuq (x)) = CrossAttention(Q = WQ(γq(x)),K =

WKZ
′
,V = WVZ

′
), where γq is a Fourier features embedding of bandwidth ωq . (iii) Decode

with MLP: Finally, we use a small MLP to decode this feature vector and obtain the reconstruction
û(x) = MLP(fuq (x)). In contrast with existing neural field methods for dynamics modeling, the
feature vector here is local. In practice, one uses multiple cross attentions to get feature vectors with
different frequencies (see Appendix Figures 7 and 8 for further details).

Training The encoder and decoder are jointly optimized as a variational autoencoder (VAE)
(Kingma & Welling, 2013) to minimize the following objective : L = Lrecon + β · LKL;
where Lrecon = MSE(utX , ûtX ) is the reconstruction loss between the input and the reconstruction
Dψ(Zt,X ) on the grid X , with Zt ∼ N (µt, (σt)2) and µt,σt = Ew(utX ). The KL divergence
loss LKL = DKL(N (µt, (σt)2) || N (0, I)) helps regularize the network and prevents overfitting.
We found that using a variational formulation was essential to obtain smooth latent representations
while training the encoder-decoder.
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...

Figure 2: Spatial interpretation of the tokens through cross attention between T geo and γ(x) for
each x in the domain. Here we visualize the cross-attention of three different tokens for a given
head. The cross attentions can have varying receptive fields depending on the geometries.

3.3 Transformer-based diffusion

Modeling the dynamics is performed in the latent Z space. This space encodes spatial information
present in the original space while being a condensed, smaller-sized representation, allowing for re-
duced complexity dynamics modeling. As indicated, the dynamics can be unrolled auto-regressively
in this space for any time horizon without the need to map back to the original space. We use ab-
solute positional embeddings Epos and a linear layer to project onto a higher dimensional space:
Z[0] = Linear(Z)+Epos. The backbone then applies several self-attention blocks, which process
tokens as follows:

Z[l+1] ← Z[l] + Attention(LayerNorm(Z[l])) (4)

Z[l+1] ← Z[l+1] + FFN(LayerNorm(Z[l+1]) (5)

We found out that adding a diffusion component to the transformer helped enhance the stability and
allowed longer forecasts. Diffusion steps are inserted between two time steps t and t + ∆t of the
time-marching process transformer. The diffusion steps are denoted by k and are different from
the ones of the time-marching process (several diffusion steps k are performed between two time-
marching steps t and t+∆t).
We then use a conditional diffusion transformer architecture close to Peebles & Xie (2023) for Rθ,
where we detail the main block in Appendix B. At diffusion step k, the input to the network is
a sequence stacking the tokens at time t and the current noisy targets estimate (Zt, Z̃t+∆t

k ). See
Appendix B, Figure 4 and Figure 5 for more details. To train the diffusion transformer Rθ, we
freeze the encoder and decoder, and use the encoder to sample pairs of successive latent tokens
(Zt,Zt+∆t). We employ the “v-predict” formulation of DDPM (Salimans & Ho, 2022) for training
and sampling.

4 Experiments

In this section, we systematically evaluate the performance of our proposed model across various
experimental settings, focusing on its ability to handle dynamics on both regular and irregular grids.
First, we investigate the dynamics on regular grids, where we benchmark our model against state-
of-the-art neural operators, including Fourier Neural Operators (FNO), ResNet, Neural Fields, and
Transformers. This comparison highlights the efficacy of our approach in capturing complex spatio-
temporal patterns on structured domains. Second, we extend our analysis to dynamics on irregular
grids and shared geometries, emphasizing the model’s extrapolation capabilities in data-constrained
regimes. Here, we compare our results with Neural Fields and Transformers, demonstrating the
robustness of our model in handling less structured and more complex spatial configurations. Lastly,
we assess the model’s capacity to process diverse geometries and underlying spatial representations
by comparing its performance on irregular grids and different geometries. This evaluation highlights
the flexibility and generalization ability of our model in encoding and learning from varied spatial
domains, showcasing its potential in accurately representing and predicting dynamics across a wide
range of geometric settings.
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4.1 Dynamics on regular grids

We begin our analysis with dynamics modeling on regular grid settings. Though our model is
targeted for complex geometries, we believe this scenario remains an important benchmark to assess
the efficiency of surrogate models.

Datasets • 1D Burgers’ Equation (Burgers): Models shock waves, using a dataset with periodic
initial conditions and forcing term as in Brandstetter et al. (2022). It includes 2048 training and 128
test trajectories, at resolutions of (250, 100). We create sub-trajectories of 50 timestamps and treat
them independently. • 2D Navier Stokes Equation: for a viscous and incompressible fluid. We use
the data from Li et al. (2021). The equation is expressed with the vorticity form on the unit torus:
∂w
∂t + u · ∇w = ν∆w + f , ∇u = 0 for x ∈ Ω, t > 0, where ν is the viscosity coefficient. We

consider two different versions ν = 10−4 (Navier-Stokes 1 × 10−4) and ν = 10−5 (Navier-Stokes
1 × 10−5), and use train and test sets of 1000 and 200 trajectories with a base spatial resolution of
size 64 × 64. We consider a horizon of T = 30 for ν = 10−4 and T = 20 for ν = 10−5 since the
phenomenon is more turbulent. At test time, we use the vorticity at t0 = 10 as the initial condition.

Setting We train all the models with supervision on the next state prediction to learn to ap-
proximate the time-stepping operator ut+∆t = G(ut). At test time, we unroll the dynamics
auto-regressively with each model and evaluate the prediction with a relative L2 error defined as

Ltest
2 = 1

Ntest

∑
j∈test

||ûtrajectory
j −utrajectory

j ||2
||utrajectory

j ||2
.

Baselines We use a diverse panel of baselines including state of the art regular-grid methods such
as FNO (Li et al., 2021) and ResNet (He et al., 2016; Lippe et al., 2023), flexible transformer
architectures such as OFormer (Li et al., 2023), and GNOT (Hao et al., 2023), and finally neural-
field based methods with DINO (Yin et al., 2022) and CORAL (Serrano et al., 2023).

Table 1: Model Performance Comparison
- Test results. Metrics in Relative L2.

Model Burgers Navier-Stokes Navier-Stokes
1× 10−4 1× 10−5

FNO 5.00× 10−2 1.53× 10−1 1.24× 10−1

ResNet 8.50× 10−2 3.77× 10−1 2.56× 10−1

DINO 4.57× 10−1 7.25× 10−1 3.72× 10−1

CORAL 6.20× 10−2 3.77× 10−1 3.11× 10−1

GNOT 1.28× 10−1 1.85× 10−1 1.65× 10−1

OFormer 4.92× 10−2 1.36× 10−1 2.40× 10−1

AROMA 3.65× 10−2 1.05× 10−1 1.24× 10−1

Results Table 1 presents a comparison of model
performance on the Burgers, Navier-Stokes1e-4, and
Navier-Stokes1e-5 datasets, with metrics reported in
Relative L2. Our method, AROMA, demonstrates
excellent performance across the board, highlighting
its ability to capture the dynamics of turbulent phe-
nomena, as reflected in the Navier-Stokes datasets.

In contrast, DINO and CORAL, both global neu-
ral field models, perform poorly in capturing turbu-
lent phenomena, exhibiting significantly higher er-
rors compared to other models. This indicates their
limitations in handling complex fluid dynamics. On
the other hand, AROMA outperforms GNOT on all
datasets, though it performs reasonably well compared to the neural field based method.

Regarding the regular-grid methods, ResNet shows suboptimal performance in the pure teacher forc-
ing setting, rapidly accumulating errors over time during inference. FNO stands out as the best base-
line, demonstrating competitive performance on all datasets. We hypothesize that FNO’s robustness
to error accumulation during the rollout can be attributed to its Fourier block, which effectively cuts
off high-frequency components. Overall, the results underscore AROMA’s effectiveness and high-
light the challenges Neural Field-based models face in accurately modeling complex phenomena.

4.2 Dynamics on irregular grids with shared geometries

We continue our experimental analysis with dynamics on unstructured grids, where we observe
trajectories only through sparse spatial observations over time. We adopt a data-constrained regime
and show that our model can still be competitive with existing Neural Fields in this scenario.

Datasets To evaluate our framework, we utilize two fluid dynamics datasets commonly used as a
benchmark for this task (Yin et al., 2022; Serrano et al., 2023) with unique initial conditions for each
trajectory: • 2D Navier-Stokes Equation (Navier-Stokes 1 × 10−3): We use the same equation as
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in Section 4.1 but with a higher viscosity coefficient ν = 1e − 3. We have 256 trajectories of size
40 for training and 32 for testing. We used a standard resolution of 64x64. • 3D Shallow-Water
Equation (Shallow-Water): This equation approximates fluid flow on the Earth’s surface. The data
includes the vorticity w and height h of the fluid. The training set comprises 64 trajectories of size
40, and the test set comprises 8 trajectories with 40 timestamps. We use a standard spatial resolution
of 64× 128.

Setting • Temporal Extrapolation: For both datasets, we split trajectories into two equal parts
of 20 timestamps each. The first half is denoted as In-t and the second half as Out-t. The training
set consists of In-t. During training, we supervise with the next state only. During testing, the model
unrolls the dynamics from a new initial condition (IC) up to the end of Out-t, i.e. for 39 steps.
Evaluation within the In-t horizon assesses the model’s ability to forecast within the training regime.
The Out-t evaluation tests the model’s extrapolation capabilities beyond the training horizon. •
Sparse observations: For the train and test set we randomly select π percent of the available regular
mesh to create a unique grid for each trajectory, both in the train and in the test. The grid is kept fixed
along a given trajectory. While each grid is different, they maintain the same level of sparsity across
trajectories. In our case, π = 100% amounts to the fully observable case, while in π = 25% each
grid contains around 1020 points for Navier-Stokes 1× 10−3 and 2040 points for Shallow-Water.

Baselines We compare our model to OFormer (Li et al., 2023), GNOT (Hao et al., 2023), and
choose DINO (Yin et al., 2022) and CORAL (Serrano et al., 2023) as the neural field baselines.

Training and evaluation During training, we only use the data from the training horizon (In-t).
At test time, we evaluate the models to unroll the dynamics for new initial conditions in the training
horizon (In-t) and for temporal extrapolation (Out-t).

Results Table 2 demonstrates that AROMA consistently achieves low MSE across all levels of
observation sparsity and evaluation horizons for both datasets. Overall, our method performs best
with some exceptions. On Shallow-Water our model is slightly outperformed by CORAL in the
fully observed regime, potentially because of a lack of data. Similarly, on Navier-Stokes 1 × 10−3

CORAL has slightly better scores in the very sparse regime π = 5%. Overall, this is not surprising as
meta-learning models excel in data-constrained regimes. We believe our geometry-encoding block
is crucial for obtaining good representations of the observed values in the sparse regimes, potentially
explaining the performance gap with GNOT and OFormer.

Table 2: Temporal Extrapolation - Test results. Metrics in MSE.

Xtr ↓ Xte
dataset → Navier-Stokes 1× 10−3 Shallow-Water

In-t Out-t In-t Out-t

DINO 2.51× 10−2 9.91× 10−2 4.15× 10−4 3.55× 10−3

π = 100% CORAL 5.76× 10−4 3.00× 10−3 2.12× 10−5 6.00× 10−4

OFormer 7.76× 10−3 6.39× 10−2 1.00× 10−2 2.23× 10−2

GNOT 3.21× 10−4 2.33× 10−3 2.48× 10−4 2.17× 10−3

AROMA 1.32× 10−4 2.23× 10−3 3.10× 10−5 8.75× 10−4

DINO 3.27× 10−2 1.40× 10−1 4.12× 10−4 3.26× 10−3

π = 25% CORAL 1.54× 10−3 1.07× 10−2 3.77× 10−4 1.44× 10−3

irregular grid OFormer 3.73× 10−2 1.60× 10−1 6.19× 10−3 1.40× 10−2

GNOT 2.07× 10−2 6.24× 10−2 8.91× 10−4 4.66× 10−3

AROMA 7.02× 10−4 6.31× 10−3 1.49× 10−4 1.02× 10−3

DINO 3.63× 10−2 1.35× 10−1 4.47× 10−3 9.88× 10−3

π = 5% CORAL 2.87× 10−3 1.48× 10−2 2.72× 10−3 6.58× 10−3

irregular grid OFormer 3.23× 10−2 1.12× 10−1 8.67× 10−3 1.72× 10−2

GNOT 7.43× 10−2 1.89× 10−1 5.05× 10−3 1.49× 10−2

AROMA 4.73× 10−3 2.01× 10−2 1.93× 10−3 3.14× 10−3

4.3 Dynamics on different geometries

Finally, we extend our analysis to learning dynamics over varying geometries.
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Datasets We evaluate our model on two problems involving non-convex domains, as described
by Pfaff et al. (2021). Both scenarios involve fluid dynamics in a domain with an obstacle, where
the area near the boundary conditions (BC) is more finely discretized. The boundary conditions
are specified by the mesh, and the models are trained with various obstacles and tested on differ-
ent, yet similar, obstacles. • Cylinder (CylinderFlow): This dataset simulates water flow around
a cylinder using a fixed 2D Eulerian mesh, representing incompressible fluids. For each node j in
the mesh X , we have data on the node position x(j), momentum w(x(j)), and pressure p(x(j)).
Our task is to learn the mapping from (wt(x), pt(x))x∈X to (wt+∆t(x), pt+∆t(x))x∈X for a fixed
∆t. • Airfoil (AirfoilFlow): This dataset simulates the aerodynamics around an airfoil, relevant for
compressible fluids. In addition to the data available in the Cylinder dataset, we also have the fluid
density ρ(x(j)) for each node j. Our goal is to learn the mapping from (wt(x), pt(x), ρt(x))x∈X to
(wt+∆t(x), pt+∆t(x), ρt+∆t(x))x∈X . Each example in the dataset corresponds to a unique mesh.
On average, there are 5233 nodes per mesh for AirfoilFlow and 1885 for CylinderFlow. We tempo-
rally subsample the original trajectories by taking one timestamp out of 10, forming trajectories of
60 timestamps. We use the first 40 timestamps for training (In-t) and keep the last 20 timestamps
for evaluation (Out-t).

Setting We train all the models with supervision on the next state prediction. At test time, we
unroll the dynamics auto-regressively with each model and evaluate the prediction with a mean
squared error (MSE) both in the training horizon (In-t) and beyond the training horizon (Out-t).

Results The results in Table 3 show that AROMA outperforms other models in predicting flow dy-
namics on both CylinderFlow and AirfoilFlow geometries, achieving the lowest MSE values across
all tests. This indicates AROMA’s superior ability to encode geometric features accurately. Addi-
tionally, AROMA maintains stability over extended prediction horizons, as evidenced by its consis-
tently low Out-t MSE values.

Table 3: Dynamics on different geometries - Test results. MSE on normalized data.
Model CylinderFlow AirfoilFlow

In-t Out-t In-t Out-t

CORAL 4.458× 10−2 8.695× 10−2 1.690× 10−1 3.420× 10−1

DINO 1.349× 10−1 1.576× 10−1 3.770× 10−1 4.740× 10−1

OFormer 5.020× 10−1 1.080× 100 5.620× 10−1 7.620× 10−1

AROMA 1.480× 10−2 2.780× 10−2 5.720× 10−2 1.940× 10−1

4.4 Long rollouts and uncertainty quantification
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Figure 3: Correlation over time for long roll-
outs with different methods on Burgers

After training different models on Burgers, we
compare them on long trajectory rollouts. We start
from t0 = 50 (i.e. use a numerical solver for 50
steps), and unroll our dynamics auto-regressively
for 200 steps. Note that all the models were only
trained to predict the next state. We plot the cor-
relation over rollout steps of different methods, in-
cluding our model without the diffusion process,
in Figure 3. We can clearly see the gain in stabil-
ity in using the diffusion for long rollouts. Still,
the predictions will eventually become uncorre-
lated over time as the solver accumulates errors
compared with the numerical solution. As we em-
ploy a generative model, we can generate several
rollouts and estimate the uncertainty of the solver
with standard deviations. We can see in Appendix
Figure 11 that this uncertainty increases over time.
This uncertainty is not a guarantee that the solution
lies within the bounds, but is an indication that the
model is not confident in its predictions.
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5 Related Work

Our model differs from existing models in the field of operator learning and more broadly from
existing neural field architectures. The works most related to ours are the following.

Neural Fields for PDE Neural Fields have recently emerged as powerful tools to model dynamical
systems. DINO (Yin et al., 2022) is a space-time continuous architecture based on a modulated
multiplicative filter network (Fathony et al., 2021) and a NeuralODE (Chen & Zhang, 2019) for
modeling the dynamics. DINO is capable of encoding and decoding physical states on irregular grids
thanks to the spatial continuity of the INR and through auto-decoding (Park et al., 2019). CORAL
is another neural-field based architecture, which tackles the broader scope of operator learning, also
builds on meta-learning (Zintgraf et al., 2019; Dupont et al., 2022) to freely process irregular grids.
CORAL and DINO are the most similar works to ours, as they are both auto-regressive and capable
of processing irregular grids. On the other hand Chen et al. (2022) and Hagnberger et al. (2024) make
use of spatio-temporal Neural Fields, for obtaining smooth and compact latent representations in the
first or to directly predict trajectory solutions within a temporal horizon in the latter. Moreover, they
either use a CNN or rely on patches for encoding the observations and are therefore not equipped
for the type of tasks AROMA is designed for.

Transformers for PDE Several PDE solvers leverage transformers and cross-attention as a back-
bone for modeling PDEs. Transformers, which operate on token sequences, provide a natural solu-
tion for handling irregular meshes and point sets. Li et al. (2023) and Hao et al. (2023) introduced
transformer architectures tailored for operator learning. Hao et al. (2023) incorporated an attention
mechanism and employed a mixture of experts strategy to address multi-scale challenges. However,
their architecture relies on linear attention without reducing spatial dimensions, resulting in linear
complexity in sequence size, but quadratic in the hidden dimensions, which can be prohibitive for
deep networks and large networks. Similarly, Li et al. (2023) utilized cross-attention to embed both
regular and irregular meshes into a latent space and applied a recurrent network for time-marching
in this latent space. Nonetheless, like GNOT, their method operates point-wise on the latent space.
Transolver (Wu et al., 2024) decomposes a discrete input function into a mixture of ”slices,” each
corresponding to a prototype in a mixture model, with attention operating in this latent space. This
approach, akin to our model, reduces complexity. However, it has not been designed for temporal
problems. (Alkin et al., 2024) recently proposed a versatile model capable of operating on Eule-
rian and Lagrangian (particles) representations. They reduce input dimensionality by aggregating
information from input values onto ”supernodes” selected from the input mesh via message pass-
ing while decoding is performed with a Perceiver-like architecture. In contrast, AROMA performs
implicit spatial encoding with cross-attention to encode the geometry and aggregate obsevation val-
ues. Finally, their training involves complex end-to-end optimization, whereas we favor two simple
training steps that are easier to implement.

6 Conclusion and Limitations

AROMA offers a novel principled and flexible neural operator approach for modeling the spatio-
temporal evolution of physical processes. It is able to deal with general geometries and to forecast at
any position of the spatial domain. It incorporates in a principled framework attention mechanisms,
a latent diffusion transformer for spatio-temporal dynamics and neural fields for decoding. Thanks
to a very compact spatial encoding, its complexity is lower than most SOTA models. Experiments
with small-size datasets demonstrate its effectiveness. Its reduced complexity holds potential for
effective scaling to larger datasets. As for the limitations, the performance of AROMA are still to
be demonstrated on larger and real world examples. Also, even though it has some potential for
uncertainty modeling, this aspect has still to be further explored and analyzed.
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A Extended Related Work

Diffusion models for PDE Recently, diffusion models have experienced significant growth and
success in generative tasks, such as image or video generation (Ho et al., 2020). This success has
motivated their application to physics prediction. Rühling Cachay et al. (2023) propose DYffusion, a
framework that adapts the diffusion process to spatio-temporal data for forecasting on long-time roll-
outs, by performing diffusion-like timesteps in the physical time dimension. PDE-Refiner (Lippe
et al., 2023) is a CNN-based method that uses diffusion to stabilize prediction rollouts over long
trajectories. Compared to these methods, we perform diffusion in a latent space, reducing the com-
putational cost; and leverage the advanced modeling capabilities of transformers.

Local Neural Fields We are not the first work that proposes to leverage locality to improve the de-
sign of neural fields. In a different approach, Bauer et al. (2023) proposed a grid-based latent space
where the modulation function ϕ is dependent on the query coordinate x. This concept enables
the application of architectures with spatial inductive biases for generation on the latent represen-
tations, such as a U-Net Denoiser for diffusion processes. Similarly, Lee et al. (2023) developed a
locality-aware, generalizable Implicit Neural Representation (INR) with demonstrated capabilities
in generative modeling. Both of these architectures assume regular input structures, be it through
patching methods or grid-based layouts.

B Implementation details

Diffusion transformer We illustrate how our diffusion transformer is trained and used at inference
in Figure 4 and Figure 5. We provide the diffusion step k which acts as a conditioning input for the
diffusion model. We use an exponential decrease for the noise level as in Lippe et al. (2023) i.e.
αk = 1 − σ

k/K
min . We use the same diffusion transformer block as in Peebles & Xie (2023), which

relies on amplitude and shift modulations from the diffusion timestamp k:

α(1), β(1), γ(1) ← MLP1(k) (6)

α(2), β(2), γ(2) ← MLP2(k) (7)

Z[l+1] ← Z[l] + α(1) · Attention(γ(1) · LayerNorm(Z[l]) + β(1)) (8)

Z[l+1] ← Z[l+1] + α(2) · FFN(γ(2) · LayerNorm(Z[l+1] + β(2)) (9)

... ...

DiT Block
x H

conditioning embedding

... ...

Linear

Linear

output tokens

...

MSE

target tokens

noisy estimateprevious latent token diffusion step

Figure 4: During training, we noise the next-step latent tokens Zt+∆t and train the transformer to
predict the “velocity” of the noise. Each DIT block is implemented as in Peebles & Xie (2023).
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... ...

Latent Refiner

...output tokens

DENOISE

noisy estimateprevious latent token diffusion step

Figure 5: At inference, we start from Z̃t+∆t
K ∼ N (0, I) and reverse the diffusion process to denoise

our prediction. We set our prediction Ẑt+∆t = Z̃t+∆t
0 .

Encoder-Decoder We provide a more detailed description of the encoder-decoder pipeline in Fig-
ure 6.

...

Encode
geometry

Q

... ...

Linear Li
ne

ar

...

multivariate normal parameters 

sampling
Self-

Attention

latent tokens

x L

Cross-
Attention

K V

Q

coordinate query

modulation vector

... ......

MLP output value

feature vector

 frequency embedding

coordinates function values

K

Aggregate
function
values

...

V VK

Q

learnable tokens 
encoding prior spatial 

information 

geometry-aware tokens to 
query depending 
on the geometry

spatial representation
 of the signal

with a compressed 
channel dimensions

Figure 6: Architecture of our encoder and decoder. We regularize the architecture as a variational
auto-encoder. Cross-attention layers are used to aggregate the N observations into M latent tokens,
and to expand the M processed tokens to the queried values. We use a bottleneck layer to reduce
the channel dimension of the latent space.

Local INR We show the implementation of our local INR, both with single-band frequency and
multi-band frequency, in Figure 7 and Figure 8. The cross-attention mechanism enables to retrieve
a local feature vector fq(x) for each query position x. We then use an MLP to decode this feature
vector to retrieve the output value. In practice, we retrieve several feature vectors corresponding each
to separate frequency bandwidths. In this case, we concatenate the feature vectors before decoding
them with the MLP.
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Figure 7: Single-band local INR decoder
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Figure 8: Multi-band local INR decoder
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B.1 Hyperparameters

We detail the values of the hyperparameters used on each dataset: Table 5 presents the hyperparam-
eters of the Encoder-Decoder, while Table 4 presents the hyperparameters of the Diffusion Trans-
former. We use a cosine scheduler for the tuning learning rate for both trainings, with an initial max-
imum learning rate of 10−3 annealing to 10−5 . All experiments were performed with an NVIDIA
TITAN RTX.

For the diffusion transformer, we use K = 3 diffusion steps for all experiments and only vary the
minimum noise σmin.

Table 4: Diffusion Transformer Hyperparameters for Different Datasets
Hyperparameters Burgers NS1e-3 NS1e-4 NS1e-5 Shallow-water Cylinder-Flow Airfoil-Flow

hidden size 128 128 128 128 128 128 128
depth 4 4 4 4 4 4 4
num heads 4 4 4 4 4 4 4
mlp ratio 4.0 4.0 4.0 4.0 4.0 4.0 4.0
min noise 1e-2 1e-2 1e-3 1e-3 1e-3 1e-3 1e-3
denoising steps 3 3 3 3 3 3 3
epochs 2000 2000 2000 2000 2000 2000 2000

For the encoder-decoder, we have the following hyperparameters:

• hidden dim: The number h of neurons at each hidden layer.

• num self attentions: The number of Self Attention layers used for the decoder.

• num latents: The number M of latent tokens used to spatially project the objervations and
geometries.

• latent dim: The dimension c of each latent token.

• latent heads: The number of heads use for the Self Attention layers.

• latent dim head: The dimension of each head in a Self Attention layer.

• cross heads: The number of heads use for the Cross Attention layers.

• cross dim head: The dimension of each head in a Cross Attention layer.

• dim: The number of neurons used in the MLP decoder.

• depth inr: The number of layers in the MLP decoder.

• frequencies: The different frequencies used for the local INR. We use base 2 for
all experiments and select 16 frequencies in logarithmic scale per level. For ex-
ample, [3, 4, 5] means that we construct 3 frequency embedding vectors, the
first γ1(x) = (cos(20πx), sin(20πx), . . . , cos(23πx), sin(23πx)), for the second
γ2 = (cos(23πx), sin(23πx), . . . , cos(24πx), sin(24πx)), and for the third γ3 =
(cos(24πx), sin(24πx), . . . , cos(25πx), sin(25πx))

• dropout sequence: The ratio of points that are ignored by the encoder.

• feature dim: The dimension of the feature vector.

• encode geo: If we use a cross-attention block to encode the geometry.

• max encoding freq: The maximum frequency used for the frequency embedding γ of the
encoder.

• kl weight: The weight β used for the VAE training.

• epochs: Number of training epochs.

The most important hyperparameter of the encoder-decoder is the number of tokens M that are
used to aggregate the observations and geometries. We show the impact it has on the quality of
reconstructions in Table 6.
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Table 5: Hyperparameters of the Encoder-Decoder for Different Datasets
Hyperparameters Burgers NS1e-3 NS1e-4 NS1e-5 Shallow-water Cylinder-Flow Airfoil-Flow

hidden dim 128 128 128 128 128 128 128
num self attentions 2 2 2 3 2 2 3
num latents 32 32 256 256 32 64 64
latent dim 8 16 16 16 16 16 16
latent heads 4 4 4 4 4 4 4
latent dim head 32 32 32 32 32 32 32
cross heads 4 4 4 4 4 4 4
cross dim head 32 32 32 32 32 32 32
dim 128 128 128 128 64 128 128
depth inr 3 3 3 3 3 3 3
frequencies [3, 4, 5] [2, 3] [3, 4, 5] [3, 4, 5] [2, 3] [3, 4, 5] [3, 4, 5]
dropout sequence 0.1 0.1 0.1 0.1 0.1 0.1 0.1
feature dim 16 16 16 16 16 16 16
encode geo False True False False True True True
max encoding freq 4 4 4 4 5 4 5
kl weight 1e-4 1e-4 1e-4 1e-5 1e-5 1e-5 1e-5
epochs 5000 5000 5000 5000 5000 5000 5000

C Additional results

C.1 Time complexity analysis

We denote N as the number of observations of u, M as the number of tokens used to compress the
information, T as the number of autoregressive calls in the rollout, K as the number of refinement
steps, and d as the number of channels used in the attention mechanism. The most computation-
ally expensive operations in our architecture are the cross-attention and self-attention blocks. For
simplification, we omit the geometry encoding block in this study.

The cost of the cross-attention in the encoder is O(NMd), and similarly, the cost of the cross-
attention in the decoder is O(NMd). Let L1 and L2 represent the number of layers in the de-
coder and diffusion transformer, respectively. The cost of the self-attention layers in the decoder is
O(L1M

2d), while in the diffusion transformer, it is O(4L2M
2d).

To unroll the dynamics, we encode the initial condition, obtain the predictions in the latent space, and
then decode in parallel, yielding a total cost of O((2N+4KTL2M+L1M)Md). As expected, our
architecture has linear complexity in the number of observations through the cross-attention layers.
In contrast, GNOT relies on linear attention, resulting in a time complexity of O((LN)d2) for each
prediction, where L is the depth of the network. At inference, the cost per step along a trajectory is
LNd2 for GNOT, compared to 4KL2M

2d for AROMA.

For instance, using K = 3, M = 64, N = 4096, and d = 128, GNOT’s cost is approximately
10 times that of AROMA for each prediction throughout the rollout. Therefore AROMA is more
efficient when M ≪ N .

C.2 Encoding interpretation

We provide in Figure 9 a qualitative analysis through cross-attention visualizations how the geom-
etry encoding block helps to capture the geometry of the domain. In the first cross-attention block,
the query tokens T are not aware of the geometry and therefore attend to large regions of the do-
mains. This lets the model understand, where the boundaries of the domain are and therefore where
the cylinder is. Once the query tokens have aggregated the mesh information, the cross attention
between Tgeo and the positions are sharper and depend on the geometry.

C.3 Long rollouts

We show long rollout predictions using AROMA on Burgers dataset in Figure 10, and on Navier-
Stokes 1× 10−3 dataset in Figure 12. AROMA returns predictions that remain stable and accurate,
even outside the training time horizon.
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Cross-Attention on T Cross-Attention on Tgeo

Can be interpreted as a prior spatial 
representation of the different domains. The query 
tokens are learnt to attend to the « important » 
regions of the domains.

Token 22

Token 23

Geometry 
encoding

Geometry 
encoding

 aggregates information of the different 
positions in the domain and therefore reflects its 
geometry. Its cross-attention maps are sharper 
and adapted to the geometry. 

Tgeo

Figure 9: Evolution of the cross-attention maps between the geometry encoding stage and the ob-
servation encoding stage. Blue means the cross-attention value is close to zero while yellow means
the cross-attention score is close to one.
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Figure 10: Test example long rollout trajectory with AROMA on Burgers. Left is the predicted
trajectory and right is the ground truth.

For Navier-Stokes, we show an example of test trajectory in the training horizon (Figure 12a) and in
extrapolation (Figure 12b).
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Figure 11: Uncertainty of AROMA over rollout steps
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Figure 12: Test example rollout trajectories with AROMA on Navier-Stokes. Top: predicted tra-
jectory on In-t. Bottom: trajectory on Out-t. First row in each subfigure shows the prediction, the
second row shows the ground truth.

C.4 Scaling experiments

In Figure 13, we compare the reconstruction and prediction capabilities of CORAL and AROMA
on Navier-Stokes 1× 10−4 given the number of training trajectories. As evidenced, our architecture
outperforms CORAL significantly when the number of trajectories is greater than 103, highlighting
its efficacy in handling large amounts of data..
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(a) Step 1: Autoencoding
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(b) Step 2: Rollout prediction

Figure 13: Scaling comparison of AROMA & CORAL: relative L2 error with respect to the number
of training trajectories

C.5 Spatial tokens perturbation analysis

To validate the spatial interpretation of our latent tokens, we establish a baseline code Z0, and
introduce perturbations by sequentially replacing the j-th token, z0

j , with subsequent tokens along
the trajectory, denoted as z1

j , z
2
j , . . . ,z

t
j . Thus, the perturbed tokens mirror Z0 in all aspects except

for the j-th token, which evolves according to the true token dynamics. We show reconstruction
visualizations of the perturbed tokens in figs. 14 to 21. On the right side, we show the groundtruth
of the trajectory. On the left side, is the change in AROMA’s prediction in response to the token
perturbation. These figures show that the perturbation of a token only impacts the reconstructed
field locally, which validates the spatial structure of our tokens. Additionally, we can notice some
interesting effects of the token perturbations near the boundaries in figs. 16 and 21: our encoder-
decoder has discovered from data and without explicit supervision that the solutions had periodic
boundary conditions by leveraging the encoded geometry and the function values. This validates the
architecture of our cross-attention module between the function values, the spatial coordinates and
the geometry-aware tokens.

18



0 20 40 60 80 100
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5
pred

0 20 40 60 80 100

gt

0

25

50

75

100

125

150

175

200

Tim
estam

p

0

25

50

75

100

125

150

175

200

Tim
estam

p

Figure 14: Perturbation analysis on Burgers. Token 0.
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Figure 15: Perturbation analysis on Burgers. Token 1.
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Figure 16: Perturbation analysis on Burgers. Token 2.
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Figure 17: Perturbation analysis on Burgers. Token 3.
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Figure 18: Perturbation analysis on Burgers. Token 5.
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Figure 19: Perturbation analysis on Burgers. Token 6.
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Figure 20: Perturbation analysis on Burgers. Token 7.
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Figure 21: Perturbation analysis on Burgers. Token 8.
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C.6 Ablation study

We show the impact of the number of latent tokens on the Navier-Stokes1e-4 dataset in Table 6. We
train our auto-encoder with 10000 trajectories. We can see that the performance increases with the
number of tokens.

#Latent Tokens Test Reconstruction error
64 0.02664

128 0.0123
256 0.01049

Table 6: Influence of the number of latent tokens on the test reconstruction capabilities on
NavierStokes1e-4. Performance in Relative L2 Error.

C.7 Latent space dynamics

For Navier-Stokes, we show how the mean (Figure 22) and standard deviation tokens (Figure 23)
evolve over time for a given test trajectory. We show the predicted trajectory of the latent tokens Z
in the latent space in Figure 24.

In practice, the tokens where the logvar is 0 on Figure 23 do not impact the prediction (Rolinek
et al., 2019).
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Figure 22: Latent space dynamics on Navier-Stokes 1e-3 - Mean tokens over time. Each color line
is a different token channel.
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Figure 23: Latent space dynamics on Navier-Stokes - Logvar tokens over time. Each color line is a
different token channel.
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Figure 24: Latent space dynamics on Navier-Stokes - Predicted tokens over time. Each color line is
a different token channel.
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